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Summary: Software agents in complex, dynamic environments need to update, adapt, and improve their knowledge models for decision making in order to 

achieve adequate results. Their individual adaption often relies on machine learning from observational data. However, when data is not available in the required 

quantity and quality, alternative approaches are required. We propose an interaction-based approach to individual model adaption in multiagent systems, describe 
agent roles and discuss how a goal-oriented transfer of knowledge among agents can be integrated into an agent-based knowledge management framework. 
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1. Introduction 

 

In recent years, multi-agent technology has been adopted for 

applications in the logistics domain by a growing number of 

research groups. Applications range from b2b coordination in the 

context of supply chain management (SCM) and operative 

transport planning to management of manufacturing and assem-

bly processes. Typically, software agents represent either logistic 

service providers or individual human decision-makers such as 

dispatchers. In autonomous logistics, the control of logistic pro-

cesses is delegated to individual logistic objects [1]. Autonomous 

logistic entities, represented by software agents, are to plan and 

supervise their own passage through logistic networks. Previous 

research has focussed on collaboration and coordination of indi-

vidual agents. This research, by contrast, addresses collaboration 

in agent-oriented knowledge management (KM); namely individ-

ual adaption of prediction models that enable informed decision-

making in process control. As constituents of multi-agent sys-

tems (MAS) for autonomous control of logistic processes, the 

individual software agents can be characterized by their respec-

tive logistic roles [2]. These may involve management of logistic 

resources. In transport logistics, such resources encompass means 

of transport or handling equipment, as well as storage facilities 

[3]. In production logistics, managed resources include machines 

or material handling equipment in assembly lines. Other roles 

involve the management of the subjects of the logistic functions 

themselves; namely, commodities [4] and work pieces [5]. With-

in the scope of their roles, the agents assume responsibility to 

execute logistic tasks on behalf of their logistic entities. The 

logistic roles of the agents constitute primary roles. Thus, in-

formed decision making within these roles is their primary goal. 

 

2. Problem Definition 

 

A prerequisite for informed decision making is the availabil-

ity of adequate information and knowledge. To acquire both, the 

agents assume auxiliary roles, which implement agent-oriented 

KM in addition to their primary logistic roles. Knowledge man-

agement is qualified here as agent-oriented for contrast with 

traditional use cases, since both providers and consumers of KM 

functions are software agents. Besides shared a-priori domain 

knowledge, a vital form of knowledge to be provided via dedicat-

ed KM roles, especially in dynamic environments, is a-posteriori 

knowledge. It comprises empirical data acquired via observation 

and decision support models such as classifiers that can be used 

as prediction models. Examples in freight haulage and SCM 

include prediction models for traffic densities within transport 

networks [3] or handling time at transshipment points. In fabrica-

tion and assembly, relevant predictors allow, e.g., estimation of 

processing times at machines.  

The required prediction models ensue from the primary lo-

gistic roles. The requisites on dedicated auxiliary KM roles are 

hence described as follows: Once an agent is to assume a new 

primary role, models with acceptable prediction performance 

need to be made available in a timely fashion. We assume that 

these prediction models need to be constructed by each individu-

al agent based on its own empirical data using machine learning 

(ML). The agents perform supervised single-agent learning. Their 

situation is related to that found in Closed Loop Machine Learn-

ing in that the agents gather empirical data in a goal-directed way 

to support further learning. However, since the agents have as-

signed logistic roles, they need to learn 'on the job'. Thus, the 

empirical data, which is required to learn a prediction model to 

support decision making in the context of a logistic role, is ac-

quired from observation of the situation context while already 

playing the aforementioned role. This situation bears implications 

for the agent learning tasks: The empirical data that can be ac-

quired is biased by primary logistic roles, specialization, and 

environment (e.g., due to a particular assignment of haulage or 

production orders). Second, since agents already need to perform 

their logistic roles competitively while, in the background, learn-

ing models to support decision making, prompt availability of 

those models is critical. Specifically, it may be infeasible for the 

agents to first acquire month’s worth of empirical data. When in 

the context of an auxiliary KM role, an agent fails to learn a 

prediction model with acceptable prediction quality – implying 

that its training set has not been representative – its only option 

for self-sufficient action is the acquisition of further empirical 

data. This approach may take considerable time. Furthermore, 

due to the constraint that the agent acts in order to best serve its 

logistic rather than its knowledge management objectives, it is 

hard if not infeasible to actively explore the environment to ef-

fectuate making 'helpful' observations. Consequently, there is a 

need to establish novel options for the individual learner to en-
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hance the basis for its learning processes. To that end, consider 

that depending on the granularity of autonomous control, the 

primary logistic roles in particular processes may not be per-

formed exclusively by single agents, but by groups of agents. The 

decentralized operative transport planning for individual trucks in 

a freight forwarder fleet investigated in [3] constitutes a paradig-

matic example: In this scenario, several agents of a logistic ser-

vice provider assume transport management roles. Thereby, each 

agent acts on behalf of a single truck. The decision making for 

such primary roles relies on a common set of dedicated predic-

tion models. Even when distinct role specializations exist, a close 

relation within a role taxonomy may still imply the employment 

of similar prediction models.  

Autonomous logistics therefore constitutes one particular in-

stance of a system environment in a specific application domain 

where groups of agents within an MAS each face kindred single-

agent learning tasks to construct situated prediction models in 

order to support identical or related primary roles that are played 

in overlapping operative contexts. The problem definition is then 

to unlock potentials for the enhancement of individual learning in 

system environments exhibiting aforementioned characteristics.  

 

3. Related Work in Machine Learning 

 

Two strands of ML with special relevance are transfer learn-

ing from previous learning tasks and interactive learning sup-

ported by other individuals. Transfer learning addresses the spe-

cific problem of an insufficient data basis to learn a model 

through re-use of training data originally collected for related 

learning tasks [6]. A broadening of the data basis is also a prima-

ry goal in active learning [7]. The approach has been suggested 

amongst others for classification problems where the labelling of 

training instances is costly or time-consuming. Beginning with a 

small pool of labelled training data, the learning system iterative-

ly learns a model and assesses which additional data would pro-

vide the best chance to optimize the hitherto learned model. This 

data is acquired autonomously, e.g., through conduct of experi-

ments, or from a human domain expert. Možina et al. have pro-

posed Argument Based Machine Learning (ABML). This ap-

proach allows to attain improvements in the performance of a 

learning system by a human domain expert as an interaction 

counterpart [8]. The learning system is endowed with self-

assessment capabilities in that it monitors its own learning pro-

gress and, specifically, identifies problem instances in the train-

ing data, that are particularly ill-covered by its learned concept 

description. The learner then reaches out to its pre-set human 

interaction partner, presenting these instances as queries. The 

expert uses his domain knowledge to provide a machine-readable 

explanation (called argumentation). These are accounted for in 

subsequent learning phases. ABML addresses a challenging fla-

vour of interactive model adaption. It taps on the implicit domain 

expertise of an advisor to augment the existing advisee training 

data, thus enabling learning progress. However, the approach 

needs to be elevated to multiagent learning where knowledgeable 

peers then subsume the single human expert involved in ABML.  

 

4. A Multiagent Approach for Interactive Adaption 

 

Robust interactive adaption and transfer of individually 

learned knowledge among cooperating agents in MAS requires a 

suitable context. We draw on a framework for distributed KM 

originally proposed for intelligent agents jointly realizing control 

of autonomous logistic processes [2]. We extend this framework 

to derive necessary KM roles, means for inter-operability, intra-, 

and inter-agent organization of multiagent adaption.  

 

4.1. Role-based Distributed Knowledge Management  

 

 Often, default knowledge alone is not sufficient in order to 

accommodate for the complexity and dynamics of an agent’s task 

environment. It then becomes necessary to design adaptive 

agents, capable of individual knowledge revision and the compi-

lation of tailored models via learning. Over time, knowledge 

hence becomes to an increasing degree tailored to its task con-

text. Thus, analogously to the situation with employees within 

organizations, knowledge is spread rather than accumulated in a 

centralized knowledge repository as assumed in conventional 

knowledge management approaches. This situation is specifically 

accounted for in the knowledge management framework through 

encapsulation of well-differentiated KM functions as agent roles. 

The strength and flexibility of the role abstraction is that KM-

related abilities are not restricted to specialized agents. Rather, 

any agent is free to assume a time-variant set of knowledge man-

agement roles as deemed appropriate in its situation context. 

These roles are understood as auxiliary roles, which complement 

the aforementioned domain-specific primary roles. The KM roles 

can be further categorized into internal and external roles. We 

adopt a notion of internal roles where these are characterized by 

reasoning capabilities and a deliberation pattern. Internal roles 

can be conducted self-sufficiently. External roles also require 

interaction, structured by one or more interaction protocols. 

 

4.2. Knowledge Management Roles for Interactive Adaption  

 

In the following we sketch the roles that are involved in interac-

tive individual adaption. For an extended discussion of these 

roles, the reader is referred to [9]. 

Model Acquisition: This role is a specialization of the 

know-ledge processing role. It presupposes access to representa-

tive training data and an adequate ML scheme (e.g., a decision 

tree learner). Contingent on the agents' primary domain role(s), 

the data used for machine learning may constitute individual 

experience or originate from a data repository. Once a model has 

been learned successfully, the role also exposes its inferential 

capabilities for internal used by the agent.  

Advisee: This role is a specialization of the knowledge con-

sumer role. Any agent may assume the advisee role when an 

assessment of its decision support model has shown deficiencies 

in the model performance that cannot be handled by internal 

means alone. The agent then becomes an active learner in that it 

actively seeks for and eventually approaches peers that assume 

the learning advisory role introduced below. In the interaction 

associated with these roles, advisors are presented with learning 

problems and asked to offer advice based on their models. 

Advice Integration: This role is a specialization of the 

know-ledge processing role. It is understood as a subsidiary task 

to succeed with the advisee role. One can conceive different 

feasible interpretations of this role. As a first option, the advice 

provided as input may be used to directly revise an existing mod-

el (e.g., by pruning or expanding branches in a decision tree, or 

revision of a rule set). A second option is to conceive the advice 

integration as a specialization of the model acquisition role pre-

sented above. In such a case, a new model is learned based on the 

initial training data and the accumulated advice as additional 

background knowledge to bias/focus the operation of a learning 

scheme that is able to handle the additional input.  
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Advisor: This role complements the advisee role and is 

played by any agent with access to a decision support model if it 

wants to provide a knowledge advisory service. The model, 

which is used as basis for the advisory service may be handcraft-

ed, yet the probably more interesting use case involves individu-

ally learned models. To play an advisor role, it is necessary to 

interpret requests placed by advisees and compile tailored advice 

to address the communicated learning sub problem. The role 

abstracts from the particular type of decision support. While the 

adoption of an advisee role is triggered by a concrete need, the 

complementary advisor role may be played persistently. 

Advisory Broker: This role is devised as a specialization of 

the knowledge broker role. An agent in this role acts as a special-

ized yellow pages service within the MAS. It administers meta-

information about knowledge advisory services exposed by 

agents. The meta-information is deposited by the advisors. It 

specifies amongst others the respectively handled learning task 

(e.g., classification), any bias towards particular learning objec-

tives (e.g., avoidance of false positive classifications) and a meta-

description of the learning domain. An advisory broker also 

accepts requests by agents seeking advice for a learning problem 

and matches the request information against its advisory portfolio 

to point the requesting agents to suitable interaction partners. 

 

4.3. Additional Pieces of Interactive Individual Adaption  

 

To structure the interaction between an advisee and a num-

ber of advisees, two tiers of control need to be implemented. 

First, in [9], we have described suitable interaction patterns and 

an interaction protocol which determine the policy for advisor 

selection and the pre-set the course of a learning session from 

sending lesson contents till reception of learning advice.  Since 

interactive adaption typically is an iterated process of multiple 

learning episodes, we have modelled and implemented this as a 

Hill-Climbing search in the model space. Thus, at each point in 

time, the advisee generates learning options defined by specific 

lesson contents, then seeks advice from peers, and for those op-

tions where it received positive feedback actually evaluates the 

best model revision, measured in terms of accuracy.   

 

5. Prototype Implementation for Experimentation 

 

Except for the advisory broker, the KM-roles outlined in 

Sect.4.2 that are required for interactive individual adaption of 

classification models have been implemented, together with the 

necessary meta-control and interaction protocols, for experimen-

tation within the PlaSMA simulation environment [10] which 

itself builds upon JADE. The knowledge acquisition and especial-

ly knowledge integration roles build upon the ABML implemen-

tation by Možina that is included in the Orange system. As 

shown in Fig.1, the implementation includes additional means for 

the flexible setup of simulation experiments, thus far using data 

sets from the UCI ML repository. This allows focusing on all 

aspects of agent-oriented KM, and later transferring the approach 

to real-world logistics applications. 

 

 

 

 

 

 

 

 

 

Figure 1. Conceptual overview of the implemented proto-

type. 

 

6. Discussion and Future Work 

 

In this paper we have sketched an interaction-based approach to 

the adaption of individual decision support models in MAS. It is 

desirable when software agents in complex, dynamic environ-

ments need to update, adapt, or improve their knowledge base for 

decision making. Sometimes, this improvement process can be 

based on machine learning from observational data, alone. But 

when available data is insufficient in quantity or quality, when 

data is too expensive, or when the machine learning process turns 

out to be too complex, alternative approaches are needed. Current 

work on the proposed multiagent framework comprises an as-

sessment of the optimization potentials and computation/inter-

action costs, as well as support for multiple active advisors. 
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