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Summary: In this work, the optimization of control parameters for an active suspension system is considered.  Here, two objectives – energy and comfort – 

play an important role. Thus, a multiobjective optimization problem is formulated which can be solved numerically with a set-oriented approach, for example. The 

result is the set of optimal compromises of the objectives, the so-called Pareto set. In case of the active suspension system, the crosswind has an influence on the 

system and thus also on the Pareto set. Therefore, crosswind is modelled as an external parameter which leads to a parametric multiobjective optimization 

problem. In this work we investigate the question which Pareto points are robust with respect to crosswind variations. We use a recently developed algorithm for 

the computation of robust solutions. Here, a classical variational problem is formulated which describes a parameter-dependent solution path that varies as little as 
possible in parameter space. Making use of necessary conditions for this variational problem a nonlinear system of equations is formulated and solved 

numerically. Although one can observe significant variations of the Pareto sets for our application example, two robust Pareto points are computed. Hence, we can 

show that our approach reveals additional information which might be used in the self-optimization process in the future.  
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1. Introduction 

 

In almost any application optimization plays an important 

role. In a variety of these applications not only one objective but 

several ones are desired to be optimal at the same time. For 

instance, in manufacturing cost has to be minimized, but at the 

same time also quality is desired to be maximal - at least to a 

certain degree. The development of theory and algorithms for the 

determination of solutions that are as good as possible with 

respect to all objectives is the task of multiobjective optimization 

(cf. e. g. [1]). The example mentioned above already illustrates 

that the several objectives typically contradict each other and thus 

do not have identical optima. Consequently, the solution of a 

multiobjective optimization problem is given by the set of 

optimal compromises of the objectives, the so-called Pareto set. 

In the case of minimization problems the Pareto set is given by 

the set of solutions in which the value of any objective function 

can only be decreased at the cost of increasing another one.  

If the objective functions do not only depend on the 

optimization parameters but also on external parameters which 

are not desired to be optimal but vary within known intervals we 

have a parametric multiobjective optimization problem. Imagine 

for instance the design process of a car which is desired to be 

optimal with respect to comfort (first objective) and safety 

(second objective). On the road, the car will be caught in a cross-

fire of influences, like cross wind, wet roads, or changes in 

temperature. The only information one has is that these 

influences can be estimated to lie in a certain interval, probably 

given by the weather forecast. Mathematically, this leads in the 

simplest case to the parametric multiobjective optimization 

problem  

 (1) 

Thus the solution (the Pareto set) also depends on the parameter 

. For the designer of a car those Pareto points are desirable, 

where the Pareto points or their images under F change as little 

as possible while the parameter varies. These points are called  

-robust Pareto points. 

For the development of modern, innovative mechatronic 

systems, the concept of self-optimization has been introduced (cf. 

[2]). A technical system is self-optimizing whenever three steps 

are repeated iteratively during operation: the analyis of the 

current situation (step 1), the determination of the system's 

objectives (step 2) and the adaptation of the system's behavior 

(step 3). Thus, self-optimization goes beyond the classical 

adaptive control in which the system's objectives are not 

changing during runtime. Multiobjective optimization plays an 

important role in the self-optimization process. One possibility to 

realize Step 3 - for a technical system which can be described by 

a mathematical model - is to choose different solutions during 

operation time from a previously approximated Pareto set. For 

this choice, the robustness of Pareto points with respect to 

variations of external parameters is an important information. 

Our robustness studies can help the decision maker to formulate 

adequate heuristics for the choice of Pareto points during 

operation time. 

In this work, we consider an active suspension system in 

which both energy and comfort are desired to be optimal. Cross 

wind has a significant influence on the Pareto optimal solutions. 

Thus, we investigate the computation of robust Pareto points with 

respect to crosswind variations in the following. 

 

2. Application Example: Active Suspension System 

 

A new, innovative traffic and transport concept has been 

developed at the University of Paderborn [3]. Its basic idea is to 

use the existing railway infrastructure with small autonomously 

driven vehicles, called RailCabs. These RailCabs accelerate by 
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means of a doubly fed asynchronous linear motor set between the 

existing tracks and are equipped with an active guidance as well 

as an active suspension system. 

The active suspension system performs the task of 

compensating for bumps and other excitations of the railway in 

order to increase passenger comfort in vertical and lateral 

directions. To design the controller there is a Hardware-in-the-

Loop (HiL) test rig which emulates the active suspension system 

of a RailCab, see Fig. 1. A model of this test rig serves as an 

application example in this contribution. 

The test rig consists of a coach body which can move in 

vertical, horizontal and rotational (body roll) degrees of freedom. 

Beneath the coach body there are two symmetrically mounted 

actuator groups, each one consisting of a guide kinematics, which 

is connected to a GRP (glasfiber reinforced polymers) spring and 

three hydraulic cylinders. The main function of the actuator 

groups is to exert forces on the coach body by deflecting the GRP 

springs. A chassis framework that can again be displaced by three 

hydraulic cylinders is used to simulate the railway excitation. 

In this contribution a simple sky-hook controller is used. It 

depends on three controller parameters p = {p1, p2, p3} 

representing the damping of each degree of freedom of the coach 

body. The multiobjective optimization described subsequently is 

used to compute the optimal controller configurations with 

respect to the two contradicting objectives comfort and energy 

consumption. Both of them are nonlinear functions 

 
(2)

 

They depend on the response y(t) of a linear system that is 

weighted by a diagonal positive semi definite matrix Q1,2. The 

linear system  

 
(3)

 

itself depends on the optimisation parameters p and is used to 

compute the response to a fixed excitation u(t) for a constant 

simulation time T. The crosswind is modelled as an additional 

disturbance z(t). The system consists of several parts as shown in 

Fig. 2. On the one hand there are the plant and the controller 

which describe the dynamic behaviour of the test rig. On the 

other hand the excitation and evaluation models define the 

optimization problem. The excitation model generates a 

stochastic excitation profile and the evaluation model consists of 

several low-pass and band-pass filters, see [4] for more details. 

The last part is the crosswind-model which is used to compute a 

parameter-dependent crosswind profile that acts as an additional 

disturbance to the plant. The parameter λ represents the mean 

velocity of a periodic wind velocity profile. A sketch of the wind 

profile can be found in Fig. 3. 

 

3. Multiobjective Optimization, Robust Pareto Points 

and Numerical Results 

 

As mentioned above, comfort and energy are desired to be 

optimal at the same time in this application. Mathematically 

speaking, this leads to a multiobjective optimization problem 

 (4)

 

Here, the minimization refers to the comparison of vectors. A 

vector is less or equal than another vector, if all its entries are less 

or equal than the entries of the other vector. 

In contrast to single objective optimization, where typically 

the solution is given by a single minimum of one objective 

function, in multiobjective optimization one ends up with a set of 

optimal compromises of solutions, the so-called Pareto set. 

Using a set-oriented approach for the numerical approximation of 

the entire Pareto set (cf. [5]) we obtained the sets plotted in 

Figure 4 for three specific -values (here, smoothing splines have 

been used to interpolate between the numerical approximation of 

the Pareto set). Recently, numerical algorithms have been 

developed which allow for the computation of robust Pareto 

points, i.e. Pareto points which change as little as possible under 

the variation of an external parameter (cf. [6], [7]). In the 

application under consideration, the crosswind  is such an 

external parameter. To compute Pareto points that stay constant 

under the variation of crosswind, the variational problem  

 
 

Figure 1. The test rig for the active suspension system. 

 
Figure 2. Optimization model of the active suspension system. 

 
 

Figure 3. One example crosswind velocity profile. 
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(5)

 

is considered. Here, the constraint stems from a necessary 

condition for Pareto optimality, the so-called Kuhn-Tucker 

equations, which state that for each value of  there exists a 

weight vector  in a Pareto point p( ) such that the following 

equations are satisfied (in our case for k = 2): 

 
(6)

 

Although this is only a necessary condition, numerical 

algorithms typically make use of this criterion. The integral in (5) 

means that the energy of the -dependent curve of Kuhn-Tucker 

points is minimized. If points exist in which all Pareto sets 

intersect, this is the same as the minimization of the curve length.  

A necessary condition for optimality of (5) is given by the 

so-called Euler-Lagrange equations (cf. e. g. [8]). In [6,7] we 

have considered a discrete formulation of the Euler-Lagrange 

equations going back to [9] which leads to a system of nonlinear 

equations that characterizes candidates for robust Pareto points. 

This system of equations is given as  

 

 

(7)

 

 

where N+1 is the number of discretization points on the curves 

p(), () and (), which itself is a so-called curve of 

Lagrangian multipliers. We chose N=10 discretization points of 

the crosswind  between 0 m/s and 16.3 m/s. According to this 

choice, the values of j are given by j = 0 + j  0.163, j=0,...,N. 

The system of equations consists of 99 equations in 99 

unknowns. For the computation of robust points in case of the 

active suspension system we have used the MATLAB solver 

fsolve [10] to compute solutions numerically. The results are 

given in Figure 4 (black dots).  

There are two robust Pareto points which is an interesting 

result, especially in view of the significant variations of the entire 

Pareto sets. The lower-left robust point in Fig. 4 could be 

expected from the engineering as well as the mathematical point 

of view. At this edge of the Pareto set the configurations are 

energy-optimal. In the case of our active suspension system 

energy-optimality stands for a passive system without any active 

suspension, i.e., p1=p2=p3=0. This is independent of the 

crosswind values. The fact that our algorithm computes this 

robust point enhances its suitability even for complex 

mechatronic systems.  

More interesting is the second robust point, which is located 

at the opposite edge of the Pareto set. There is not a simple 

reason, neither mathematically, nor from the engineering point of 

view, which indicates that in advance. Hence, this is really some 

additional information about the active suspension system which 

might be used in the self-optimization process in future work. 

The availability of robust Pareto points introduces a classification 

of optimal system configurations that can be used during system 

operation, for example if dependability is one of the design 

objectives. 
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