
1st Joint International Symposium on System-Integrated Intelligence 2012: 121
New Challenges for Product and Production Engineering

A First Step towards Real-Time Virtual Machine Migration in Heterogeneous Multi-
Processor Systems

S. Groesbrink

Design of Distributed Embedded Systems, Heinz Nixdorf Institute, University of Paderborn, Germany
E-Mail: stefan.groesbrink@hni.upb.de

Summary: The combination of system virtualization and heterogeneous multi-processor architectures can help to create efficient platforms that meet the

requirements of increasingly complex embedded systems. Virtualization adds runtime flexibility and facilitates by modular synthesis the creation of a system of
systems. However, existing virtualization solutions are characterized by a completely static mapping of virtual machines to processors and do not use the full
potential of heterogeneous architectures. The presented solution applies migration and emulation to realize a dynamic assignment of virtual machines with real-
time constraints. It identifies the necessary conditions for migration and the degree of communication between hypervisor and operating system that is
indispensable for migration decisions.

Keywords: System Architecture, Algorithm, Flexibility, Reliability.

1. Introduction

There is a trend towards adaptability and self-optimization

for advanced mechatronic systems [1]. As a reaction to defects of
components or changes of the environment, self-optimizing
mechatronic systems adjust their behavior at runtime. The
realization of such systems demands dynamic system software
architectures, since the traditional static approaches for embed-
ded software are inappropriate for the varying resource require-
ments of adaptive systems. The primary objective for
mechatronic systems remains the guarantee of real-time behavior.

1.1. System Virtualization

System virtualization is a powerful technology for integrated

adaptive systems. State-of-the-art in the enterprise and server
space for a fairly long time, virtual machine technologies are now
gaining acceptance in the field of embedded systems [2]. A
virtualization layer called virtual machine monitor or hypervisor
is added between hardware (CPU, memory, I/O devices) and
operating system (OS). This allows for the concurrent execution
of multiple OSs: each guest OS is executed in a dedicated virtual
machine (VM) and gets the illusion of accessing the real machine
exclusively (Figure 1). The underlying hardware can be shared
and utilized effectively with maintained isolation between the
subsystems, which is important for critical mechatronic systems.

1.2. Heterogeneous Multi-Processor Systems

Multi-processor systems are already very common in the

field of mechatronic systems and have the potential to provide
powerful and efficient platforms that meet the high functionality
requirements of upcoming products. Multi-processor technology
is a major enabler for virtualization, since the architectural
abstraction aspect of virtualization allows an essentially
unmodified porting of single-core implementations to multi-
processors without re-architecting [3]. In contrast to the shared
random access memory (RAM) of multi-core architectures, the
memory is distributed in a multi-processor system.

Processor heterogeneity is a closely related trend. The
different requirements of the subsystems can be met with
adequate processors. Heterogeneous platforms enable the con-
solidation of legacy systems that were developed for different
processor architectures. A popular example of a heterogeneous
multi-processor architecture is the Xilinx Virtex series of FPGAs
(Figure 2). It combines a highly configurable MicroBlaze
processor and a PowerPC processor for performance oriented
applications [4]. The processors work on their own RAM, but are
connected by a bus hierarchy and can use shared memory, which
is connected to the bus as well.

Figure 1. System Virtualization in a Multi-processor
Architecture. Figure 2. Example for a Heterogeneous Multi-processor

System (cf. [4]).

122

1.3. Virtual Machine Migration

Migration refers to the relocation of virtual machines from

one processor to another one at runtime. Prerequisite is a plat-
form of multiple connected processors, each of them running a
hypervisor (Figure 1). Migration offers several advantages. It
enables load balancing and increases the robustness by fault
resilience in case of partially failed processors. The increased
flexibility can be exploited to facilitate adaptability and optimize
performance and resource utilization.

 Emulation refers to the implementation of the interface and
functionality of one system on a system having a different
interface and functionality. With the use of this technique,
virtualization enables migration even in a heterogeneous
processor environment. Emulation realizes cross-platform
software portability by supporting program binaries compiled for
an instruction set architecture (ISA) that is different from the ISA
of the processor on which it is executed.

1.4. Motivation

Virtualization solutions for the server market apply highly

dynamical approaches, are however not real-time capable, a
fundamental requirement for mechatronic systems. In order to
guarantee real-time requirements, existing virtualization solutions
for embedded systems typically assign the virtual machines
statically to the processors. This is not appropriate for highly
dynamic adaptive systems. This paper presents a more flexible
virtualization solution for intelligent mechatronic systems, based
on migration and emulation.

2. Virtual Machine Migration for Real-time Systems

A real-time constraint guaranteeing migration has to assure

that the resource requirements of all virtual machines can still be
met after the migration. In addition, it has to be guaranteed that
the next deadline is not endangered by the interruption time
resulting from the migration process (downtime). This is
accomplished by the presented approach, which is based on the
basic architecture of Figure 3. The individual components are
explained in the following.

2.1. Real-time Emulator

An emulation component as part of a hypervisor for

mechatronic systems has to guarantee real-time response times
and a completely predictable timing behavior. In previous work
in the context of this project, Kerstan and Oertel developed an
emulation method, which combines the two basic emulation

approaches interpretation and binary translation for an optimal
trade-off between required memory and performance [5]. Of
major importance, the approach derives the processor speed that
is required to meet all deadlines. For each possibility to execute
software that was compiled for ISAhost and that can be emulated
on ISAtarget, the instruction of ISAhost that is slowed down the most
on the target processor is crucial. It determines the required speed
for the target processor to meet the timing constraints, more
precisely the speed-up factor, which denotes how much faster the
target processor has to be in comparison to the host processor:

Shost,t argetmax
#T argetCycles(emuhost2 t arget (instr))

SourceCycles(instr)









instr  ISAhost











The calculation is based on the ratio of the execution times

in number of clock cycles. emuhost2target(instr) determines the
sequence of instructions, which has to be executed to emulate the
instruction instr.

The calculation of the speed-up factor is for multiple reasons
a pessimistic overestimation. First, it is assumed that the cycles
per instruction are constant, not considering dynamic
optimizations of the processor. Second, a program may not call
the instruction that is slowed down the most, but this instruction
is nevertheless included in the determination of the required
speed-up. These overestimations allow for a static computation
of the speed-up factor, based only on the characteristics of the
processors and independent from the actual executed software,
which is of great help for open and adaptive systems.

2.2. Load Information Collector

The component for load information collection gathers at

runtime data about the resource utilization. The analysis of this
data is the base for the migration decisions taken by the
migration manager. The hypervisor assigns the resources to the
VMs and has therefore knowledge about the guest’s memory and
I/O usage. However, the hypervisor does not have any insight in
the scheduling of the guest operating system and does by
consequence not know the next deadline. Therefore, it cannot
evaluate whether a certain downtime invokes a deadline miss or
not.

Consequently, an explicit communication between guest OS
and hypervisor is required. Whenever the hypervisor considers a
migration, it invokes the OS to pass information about the next
deadline of its tasks. The communication of the continually
changing next deadline would imply an inappropriate overhead
and therefore this information is only communicated upon
request.

2.3. Migration Manager

The migration manager is the decision-making component

of the migration process and calls the emulator and the collector.
It decides which virtual machine shall be migrated where and
when. These decisions are based on the data about resource
utilization and deadlines, provided by the load information
collector. In the following, we will look in detail on the
evaluation of possible migrations. We assume that the hypervisor
includes emulation functionality for all processor architectures of
the platform, which implies that all virtual machines can be
executed on all processors.

Figure 3. Main components of the virtual machine
migration approach.

 123

There are two necessary conditions for a migration:
1. The resource utilization of the target processor must

be low enough to permit the addition of the virtual
machine (CPU, memory, I/O). This condition is
checked by the acceptance test.

2. The downtime imposed by the migration process
must be short enough to exclude a miss of the next
deadline of the guest system. This condition is
checked by the migration test.

Before deciding pro migration, the migration manager has
therefore to conduct the following two tests:

2.3.1. Acceptance Test

The test is based on the question whether the remaining

resources are sufficient to fulfil the resource requirements of the
arriving VM. Regarding memory, a simple comparison of
unassigned memory and demanded memory is needed. Regarding
I/O resources, we assume that the I/O devices are accessible
uniformly by all processors and no check has to be performed for
these components in the acceptance test.

The test regarding the resource computation time is much
more complex. If multiple real-time VMs are assigned to one
processor, only one VM can be executed at each point in time.
The hypervisor decides which VM is active and all other VMs
experience a blackout. A guarantee that all deadlines are met
cannot be given based solely on the CPU utilization, since
periodicity and length of the activation slots have a major impact.

Dynamic solutions that do not require knowledge about all
executed tasks are unknown. For this reason, our first approach
assigns each hard real-time VM to a dedicated processor. An
addition of non-real-time VMs to a processor that hosts already a
real-time VM is however possible. In this case, the non-real-time
VMs are executed whenever the real-time VM is not running. If a
passed memory requirement test is assumed, a non-real-time VM
is always allowed to migrate.

If a real-time VM shall be migrated, the request can be
accepted if the target processor does not host already a real-time
VM. This condition is however not sufficient, since in a
heterogeneous multi-processor architecture, the execution time of
an application depends on the processor. If only the processor
speed differs, the migration request can be accepted if the speed
of the target processor is equal or greater than the speed of the
host processor. If the instruction set architecture differs, the
overhead introduced by emulation has to be added. As a
consequence of this overhead, the target processor must have a
speed of at least Shost,target, as introduced in section 2.1.

2.3.2. Migration Test

The worst-case virtual machine downtime must be

predictable for a real-time system. Only under this condition, it is
possible to evaluate whether the downtime leads to a missed
deadline or not. The downtime adds up by the following time
intervals:

1. Detaching. The execution of the VM is suspended
and a buffering of the communication is set up. The
executable code, memory, and processor state
(content of registers, set flags) are wrapped up to a
transferrable data package.

2. Transfer. The extracted VM state is communicated to
the target processor.

3. Resume. The VM state is unwrapped, the code
loaded, the memory copied, the processor state reset,
and the buffered communication processed.

The migration test is passed, if the remaining time until the

next deadline is equal or greater than the downtime plus the time
required until the remaining execution time of the task is
completed on the target processor.

2.3.3. Migration Decision

The last two sections dealt with the conditions that are
necessary for migration. However, it is of course not intended to
migrate whenever possible. In fact, a reasonable trade-off
between adaptability and stability has to be found. It is in general
plausible that migration should be performed if the functioning of
a subsystem can continue despite a hardware failure. Very
similar, migration is very valuable for open systems, since it can
allow for the acceptance of an arriving subsystem in situations, in
which this is not possible without migration. Whether a migration
should be conducted to improve the load balancing is much more
application-specific and it is difficult to define general yields.

3. Conclusion

This paper presents an approach for the emulation-based

migration of virtual machines with real-time constraints in
heterogeneous multi-processor systems. The communication
between hypervisor and guest operating system was examined
and the indispensable information passing to decide pro
migration without endangering real-time constraints was
identified.

The approach is currently integrated into our real-time
hypervisor Proteus [6]. The implementation requires paravirtual-
ization, that is to say a modification of the guest operating
systems. This necessity results from the fact that the guest
operating systems have to pass information to the hypervisor.

Acknowledgements

This work was supported by the German Collaborative

Research Center 614 - Self-Optimizing Concepts and Structures
in Mechanical Engineering (SFB614, www.sfb614.de).

References

[1] Pook, S., Gausemeier, J., Dorociak, R., 2012, Securing the
Reliability of Tomorrow’s Systems with Self-Optimization, The
Annual Reliability and Maintainability Symposium.
[2] Heiser, G., 2008, The Role of Virtualization in Embedded
Systems, The 1st Workshop on Isolation and Integration in
Embedded Systems.
[3] Neumann, D., 2006, Intel Virtualization Technology in Em-
bedded and Communication Infrastructure Applications, Intel
Technology Journal, 10/3.
[4] Xilinx, Inc., 2002, Virtex-II Pro Platform FPGA Handbook.
[5] Kerstan, T., Oertel, M., 2010, Design of a Real-time Opti-
mized Emulation Method, Proceedings of the Conference on
Design, Automation, and Test in Europe.
[6] Baldin, D., Kerstan, T., 2009, Proteus, a Hybrid Virtualiza-
tion Platform for Embedded Systems, Proceedings of the 3rd
International Embedded Systems Symposium.

