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Summary: This article examines the development of a methodology to predict the remaining service life of gentelligent components. The methodology 

refers to the wear type of fatigue and is based on a maintenance control cycle developed in the sub-project N3 of the Collaborative Research Centre 653. 

Component conditions are evaluated over the entire life cycle and stored in a database. The stored data serve as experience and knowledge for monitoring the 
condition of a current component and enable the prediction of the remaining service life. For this purpose, the stresses to which the monitored component has been 

subjected to date are compared with the stress data of empirical knowledge. If the database contains information about components which were exposed to a 
similar stress profile during their life cycle, these will be used for the forecast. The statistical analysis of these stress profiles enables the limitation of the future 

stress on the monitored component and thus an estimate of the remaining service life. Knowledge about the remaining service life is an essential basis for the 

selection of a possible maintenance measure. 
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1. Collaborative Research Centre 653 – Gentelligent 

components 

 

The forecast of the component service life is the central 

content of the sub-project N3 “Component status-driven 

maintenance”. The methodology of component status-driven 

maintenance (GI maintenance) is being developed by 

Collaborative Research Centre 653 (CRC 653). The objective of 

CRC 653 is the development of gentelligent components (GI 

components). Gentelligence is made up from the words 

‘genetics’ and ‘intelligence’, and refers to the ability of 

components to be both “knowing” and “feeling”. Components 

are enabled to absorb information from their environment, 

process it further and pass it on to subsequent component 

generations [1]. 

Sub-project N3 uses the recorded information, such as 

component stresses, to determine suitable maintenance measures. 

A significant deciding factor is the forecast service life of the 

component. This article will examine the forecast methodology 

in greater detail. 

 

1.1. Component-inherent sensors 

 

Sensors are required to record component stresses. 

Previously used sensors such as strain gauges have no significant 

place in the monitoring of component stresses due to their high 

complexity in use. They are used mainly in laboratory trials for 

component design. Micro-sensors offer one possibility for the 

permanent monitoring of stresses during operation. These 

represent an alternative, but much like strain gauges have to be 

integrated on or in the components. 

Sub-projects of CRC 653 however are developing 

component-inherent sensors. This requires the use of sensitive 

materials. They enable the registration of the component stresses 

over the entire life cycle of a component, and thus provide the 

information needed for component status-driven maintenance. 

The sub-project E2 of CRC 653 is developing a novel 

magnetic magnesium alloy as the sensitive material. For the 

measurement of the stress, the Villari effect is used, by which the 

flux density of the alloy is dependent on the strain and varies 

depending on the tractive or compression stress. The flux density 

is measured by means of an eddy current signal [2]. Other sub-

projects deal with the measurement of the inherent stress in the 

component surface [3], and the measurement of Martensite 

content of austenitic steels. Both of these properties vary 

depending on the component stresses [4]. 

 

1.2. Control cycle of component status-driven maintenance 

 

The methodology of component status-driven maintenance 

can be illustrated by a control cycle. This consists of a knowledge 

basis, a comparison, diagnostic and forecasting module [5], as 

well as modules for the derivation of a reaction strategy and 

maintenance, as shown in Figure 1. 

 

 
Figure 1. Control cycle of GI maintenance. 

 

The control cycle shown in figure 1 demonstrates the GI 

maintenance on a racecar (GI system) with a wheel carrier as an 

exemplary GI component.  

The stress information of the wheel carrier can be readout 

during a pit stop. This information is used as input parameters of 

the comparison module which compares the current condition of 

the wheel carrier with the expected condition. The diagnosis 

module diagnoses between possible failure causes and the 

forecast module predicts the future condition of the wheel carrier. 

The results of comparison, diagnosis and forecast module are in 
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turn input parameters of the reaction strategy. The suitable 

reaction strategy is made by a Bayesian network. On the basis of 

the input parameters the Bayesian network determines an 

appropriate maintenance measure. 

The focus of this article is the forecast of the component 

service life, which takes part in the forecast module. 

 

2. Component condition and service life forecast 

 

The current condition and the future probability of failure 

are important factors for the selection of a suitable maintenance 

strategy. The condition is based on the fatigue of the component 

that arises as a result of recurrent stresses. It is possible to 

measure these stresses with the previously introduced sensors of 

CRC 653. 

One method of quantifying the current component damage is 

linear damage accumulation. By this means the stress 

experienced can be converted into the collective stress with the 

aid of counting procedures, and the partial damage then 

calculated. The accumulation of damage is the most widely used 

method of service life calculation of components at risk from 

fatigue. However, the method has several weaknesses, such as 

the simplification of stresses in terms of level or the neglect of 

highly scattered service lives. The new development of a 

methodology for condition-based monitoring of GI components 

is therefore necessary to fully exploit the possibilities of GI 

technology. The basic elements of the methodology are presented 

in Figure 2. 

 

 
 

Figure 2. Basic elements of the service life forecast. 

 

The identification of the condition of the component begins 

in the first step with the conversion of the measured stress into a 

time-related collective stress. This evaluation of the stress is still 

carried out according to the Rainflow method, while the 

preparation of the result centres not on the frequency of the 

individual stresses, but the time of a stress. In this way, the 

information about the time of the stress is maintained in the 

collective stress. The collective stress enables the calculation of 

the course of the damage with the aid of linear damage 

accumulation. 

 

2.1. Knowledge basis and classification 

 

The second step involves the development of the knowledge 

basis. Each monitored component must be created as a data set. 

This stores the essential information such as the location or the 

stress experienced. These are retained following the end of the 

life cycle of the component and serve as empirical knowledge for 

all following components. Figure 3 shows an example excerpt 

from the database. 

Once a sufficient number of records exists, the third step 

begins. This includes the classification of the damage patterns. 

Firstly of the monitored component itself and secondly of 

identical components that are stored in the database as empirical 

knowledge. The classification determines the criteria maximum 

individual damage of a stress (Dmax), the average damage (Da) at 

a defined interval, and the standard deviation (Sd) of the damage. 

The classification therefore enables the identification of 

excessive stresses, average stresses and the distribution of the 

stresses. 

 

 
 

Figure 3. Database as knowledge basis for GI maintenance. 

 

2.2. Selection and evaluation of comparison components 

 

Once the classification features of the components are 

identified in the database, those components can be selected from 

the existing records whose damage pattern is closest to that of the 

monitored component. For this purpose, the damage pattern is 

divided into individual areas (Interval I1… I4, figure 4) and the 

deviation of the average damage in each of these areas is 

checked. The selection is narrowed down to those components 

(comparison components) whose damage pattern lies within the 

tolerance range around the pattern of the monitored component. 

Figure 4 shows the check of the average damage (Da). 

After the comparison components have been selected, the 

evaluation of their data follows in the fifth step. For the 

comparison components, the complete life cycle up to the time of 

replacement is known. Their complete damage pattern is 

therefore also known. This provides information about the 

stresses experienced by the comparison components and the total 

damage sustained. These can be evaluated statistically in order to 

be able to determine the future stress on the monitored 

component and the remaining service life. 
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Figure 4. Example classification of the average damage and 

check of the tolerance range. 

 

2.3. Service life forecast 

 

For this purpose, the failure times of the comparison 

components are summarised in the sixth step in a histogram. The 

future failure probability of the monitored component can 

therefore be calculated. Figure 5 illustrates a exemplary 

histogram with six classes (Cx) and the increasing probability of 

failure (P(F)) with progressive stress of the component. This is 

based on the empirical knowledge of past components and 

enables the forecast of the failure probability for a selected 

number of stress cycles (Nforecast). 

 

 
Class X: Number of failures of the comparison components over 

a period of time 

Figure 5. Forecast failure probability. 

 

3. Outlook for diagnosis and reaction 

 

The further work of the sub-project N3 includes the 

development of a diagnostic module, in which fault causes are 

determined, and a reaction module. This uses the condition 

information obtained, the knowledge of the cause of the fault and 

the forecast of the service life, in order to assist maintenance 

personnel in the selection of appropriate measures by means of a 

decision-making model. This makes use of the methodology of 

the Bayesian networks. The above findings on the condition, 

cause and forecast are input variables of the Bayesian network 

and have an impact on the commercial viability of maintenance, 

such as duration and cost. The sum of the utility values forms the 

basis of the further decision-making methodology for the 

selection of appropriate maintenance measures. 
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