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Summary: In the current paper, we study the concept of dynamic scheduling in flexible flow Shop with limited carrier under stochastic machine 

breakdowns and processing time. In most flexible flow shop scheduling methods reported in the literature consider a determinist environment, where all data of 

the problem are known in advance. Most of these works focused on the development of methods to produce a feasible schedule of good quality in short time 
computing. However, real systems are stochastic and dynamic such that the initial generated schedule must deal with the presence of a variety of unexpected 

disruptions that may occur dynamically and cause deviations from the initial schedule. To cope with machine breakdowns and stochastic processing time, a 

centralized heuristic based on local search simulated annealing algorithm is used to implement the reactive scheduling for the dynamic scheduling problem. This 
centralized heuristic method will be compared with a decentralized autonomous approach. In order to evaluate the performance of the both developed approaches 

two performance measures, namely  the average flow time and the makespan, were be used. 
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1. General 

 

In recent years, scheduling problems have become the 

subjects of many studies about tasks allocation. Depending on 

availability of jobs prior to a schedule creation, scheduling 

systems can be classified into static and dynamic ones. In static 

scheduling, all jobs’ specifications are identified before creating 

the respective schedule and the production sequence does not 

change during processing. In dynamic scheduling, dynamic 

events like random job arrivals and machine breakdowns can be 

appeared, so that they affect the normal execution of the initially 

generated schedule. Therefore, a rescheduling is necessary to 

adapt the predefined schedule [1]. Conventionally, most of 

scheduling systems developed in manufacturing environments 

are centralized. Indeed, centralized systems provide better 

schedules, but they tend to face problems in dealing with 

disturbances in practice [2]. Furthermore, the continuously 

growing complexity in scheduling problems, inspired by dynamic 

circumstances, forces schedulers to simplify the centralized 

problems by decomposing them into decentralized sub-problems 

with local challenges. Thus, a large portion of scheduling 

research tries to employ decentralized architecture rather in 

dynamic scheduling.  However, among several mechanisms, 

autonomous control seems to be well adapted to such problems 

and architectures. This holds true because resources in a 

scheduling environment have the ability to generate their own 

local schedules, to react locally to domestic changes, and to 

develop a good global schedule through cooperation with each 

other [11]. Thereby, the complexity can be reduced, while the 

flexibility and fault tolerance is getting enhanced. The authors in 

[3] investigated the performance of autonomous control 

compared to different heuristics in a flexible flow shop (FFS) in 

the presence of uncertainty caused by stochastic arrival of new 

jobs. They confirmed the efficiency of autonomous control in 

dealing with stochastic arrival of new jobs in FFS. Nevertheless, 

the challenge with machine breakdowns in FFS remains 

uncovered. 

Generally, scheduling problems in manufacturing are categorized 

in three main types as flow shop, job shop, and open shop [5]. A 

scheduling problem of size n×m consists of n jobs {J1, J2,.., Jn} to 

be processed on m machines {M1, M2,.., Mm}. Briefly, in the job 

shop for each Ji a sequence of ki operations Oi=(oi1, oi2,..,oiki) 

exist that configure a certain machine processing order for Ji. 

This order is called technological constraint for the respective 

job. The flow shop is a special case of job shop which all jobs 

have the same processing order Oi. However, the jobs may or 

may not be identical [4] [5]. Furthermore, each coming job Ji can 

have its own release time ri, flow time Fi (starts from the 

readiness of the job until its final operation), and also completion 

time Ci of the last operation of the job. A machine can process at 

most one job at a time and a job can be processed by at most one 

machine at a time. In generic context FFS is an extension to 

conventional flow shop problem, where at least one processing 

stage has more than one machine in parallel. Moreover, pre-

emption of processing is not allowed. The problem consists of 

assigning jobs to machines at each stage and sequencing the jobs 

assigned to the same machine, so that defined optimality criteria 

are minimized. Nonetheless, the conventional scheduling 

problems have some assumptions that usually are not realistic in 

practice. For instance, there is no arrival of new jobs after the 

scheduling is done and the number of arriving jobs is pre-known 

and their demand is received beforehand. However, here the 

dynamic aspects of scheduling are introduced by machine 

breakdowns and stochastic processing time. 

 

2. Dynamic Scheduling 

 

2.1 Dynamic scheduling in conventional centralized 

approach 

 

The problem of dealing with uncertainty and stochastic 

events is addressed in literature by dynamic scheduling. Three 

general approaches of scheduling in consideration of 
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uncertainties can be found as proactive scheduling, reactive 

scheduling, and predictive–reactive scheduling [1] [6]. 

Proactive scheduling is often used when the uncertainty can be 

quantified in some ways. It tries to calculate a robust schedule by 

taking into consideration uncertainties, which could occur during 

the execution of the schedule. Reactive scheduling takes place at 

the time of execution of the schedule and the decisions can be 

made locally in real-time. This approach is often used in highly 

dynamic and complex environments, which are very difficult to 

control. Predictive-reactive scheduling is a hybrid strategy, 

which consists of two phases. In the first phase “predictive 

scheduling”, a preventive schedule (or so-called baseline) is 

generated. This baseline schedule determines the start and 

completion times of jobs based on given requirements and 

constraints. The second phase “reactive scheduling” is about the 

execution of the schedule and its revision in response to 

unexpected real-time events [7]. 

Since the scheduling problem in complex manufacturing system 

is strongly NP-hard, the use of heuristic methods like dispatching 

rules is a common approach. However, in recent years, meta-

heuristics (tabu-search, simulated annealing, and genetic 

algorithm) have been successfully employed to solve dynamic 

flexible flow shop scheduling problems. 

In this paper a genetic algorithm (GA) is used to generate a good 

initial schedule to assign products to machines by means of 

product types. A machine breakdown will be introduced to 

incorporate the disruption in the production system. Once a 

machine is failed, it cannot perform any job until it will be 

repaired. Additionally, the fixing time is assumed to be known in 

the simulation. Indeed, such disruptions need to be mitigated 

through a rescheduling action. In this regard, simulated annealing 

(SA) algorithm generates a partial schedule that attempts to 

revise the initial schedule for responding to the environment 

changes without rescheduling the complete schedule. In other 

words, the initial schedule generated by GA has initially defined 

the best schedule for operations, in which the breakdowns in 

progressing interrupt it.  

 

2.2 Dynamic scheduling in decentralized autonomous 

approach 

 

Autonomous control describes processes of decentralized 

decision-making in heterarchical structures. The objective of 

autonomous control is to achieve more robustness and positive 

performance of a total system, due to distributed and flexible 

sub-systems, challenging with dynamics and complexity [8]. 

According to this definition, autonomous control is characterized 

by a shift of decision-making capabilities form a total centralized 

system to its elements. Generally, elements of an entire system in 

a manufacturing and logistics environment encompass several 

objects. These elements may span single parts of products to 

machines in shop-floors and, in a broader scale, to factories of a 

supply network. More specifically, in scheduling problems 

autonomous control approach allows intelligent logistic objects 

to find their own processing sequences by themselves through a 

network, concerning their own objectives [9]. Generally, the term 

of intelligent autonomous objects in logistics covers physical 

objects (e.g. parts, machines, carriers, etc.), as well as immaterial 

objects (e.g. production orders). Due to the novel information and 

communication technologies, these objects are able to interact 

with each other and to gather information about the current states 

of local systems. These intelligent logistic objects are able to 

generate decisions according to their own logistic targets on the 

basis of this information. This kind of decentralized decision-

making may positively influence the system’s behavior and helps 

to improve the handling of dynamics, like occurrence of 

unforeseen events (e.g. machine breakdowns). One of the 

enabling methods for autonomous activities is learning, also 

called recognizing the patterns [10].  In this manner, an 

autonomous object is able to distinguish and learn the local 

behaviors, besides, making decisions based on learning by 

compromising rewards and penalties.  

In particular, the considered intelligent objects in this paper 

are autonomous carriers in flexible shop floor. The autonomous 

carriers employ fuzzy controller to realize autonomy in their 

decisions [11]. Indeed, each carrier compares the stochastic 

waiting times of parallel stations and chooses the best machine 

with the least waiting time, based on fuzzy sets. 

 

3. Problem description 

 

FFS scheduling can be seen as an extension to the general 

form of flow shop scheduling problem. Thus, the FFS to be 

considered in this paper consists of 3 series of production stages, 

each of which has three identical machines operating in parallel 

and one (un)load station that produce three types of products, see 

Fig. 1. All jobs released to the FFS have to visit all the stages in 

the same order. Table I shows the mean processing time (µ) with 

normal distribution of each stage pro product types. We consider 

three types of end products, with a constant number of carriers 

pro product types, which transport the product to be performed 

into different stages. Whenever, a product is arrived two 

possibilities happen, either the respective carrier with the same 

type of product is available and get released to the system, or any 

carrier is not available and the product muss wait till a carrier 

with the same type comes to load station. This limitation in the 

carrier number makes the problem more complex and a 

challenging task, since an additional constraint is added into the 

conventional problem description of FFS. Indeed, in industrial 

practices with waste elimination approach (like pull system in 

lean manufacturing) product carriers represent the production 

capacity of the system. In other words, lean balancing can be 

occurred by limited number of carriers [11]. We want to reflect 

this practical performance in our scheduling problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flexible flow Shop with 3x3 paralleled machines. 
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Table 1. Products processing times in minutes. 

 

Products Processing Times 

Product 

Type 

Stage 

1 2 3 

1 2:00 2:40 2:20 

2 2:20 2:00 2:20 

3 2:40 2:20 2:00 

 

3.1 Problem formulation 

 

In this paper, the centralized heuristic system for scheduling 

is considered as the optimum scheduling for conventional 

situations. However, this initial schedule is used for the 

comparison with other alternatives at the presence of breakdowns 

in both centralized heuristic schedule and autonomous control 

with decentralized approach. Generally, the experimented 

scenarios are following: 

 Centralized heuristic scheduling once with 

breakdowns and stochastic processing times (normal 

distribution) and once without breakdowns and with 

deterministic processing times. 

 Decentralized autonomous control by carriers with 

breakdowns and stochastic processing times. 

We assume that the arrival date of products is known in advance. 

The used notations for the considered scheduling problem 

are as follows. 

Indices: 

N: number of jobs. 

T: number of product types. 

S: number of stages. 

Parameters and variables: 

N
s
: number of parallel machine at stage s. 

Pi,j : mean processing time of job j on machine of stage i. 

Ci,j : the completion time of job j on machine of stage i. 

Cj : completion time of job j;     ∑     
 
    

rj : the point of time at which the job j is available. 

Fj : Flow time of job j; Fj = (Cj – rj) 

 

Cmax : makespan;                {  } 

 

Fave : average flow time: Fave ∑
  

 

 

   
 

 

The objective in this paper is just to find the best approach 

that minimize the makespan of the entire products and minimize 

the average flow times of all products in every type. Other 

conflicting objectives are going to be considered in further 

works. 

 

4. Problem description 

 

Several Simulation runs have been set up in order to analyse 

the impact of machine breakdowns. The examined variant is 12 

pallets (4 each type), 48 products (16 each type). A machine 

breakdown is introduced each 18 minutes in a machine in stage 2 

and a machine in stage 3. The time to repair the machines is 10 

minutes in one experiment and 4 minutes in another experiment. 

 

 

 

 

Table 2. Comparison of centralized and decentralized 

approach. 

 

 Makespan Average Flow Time 

 Centraliz

ed 

Autonomous Centralized Auton

omous 

Without 

machine 

break-

downs 

33:13 35:17 08:04 13:02 

With 

machine 

break-

downs (4 

Minutes to 

repair) 

36:29 36:22 08:41 13:42 

With 

machine 

break-

downs (10 

Minutes to 

repair) 

38:29 45:36 09:18 15:18 
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