
186 1
st
 Joint International Symposium on System-Integrated Intelligence 2012:

New Challenges for Product and Production Engineering

Data Processing and Communication in Distributed Low-Power Sensor Networks Using

Multi-Agent Systems

S. Bosse
1,3

*, F. Pantke
2,3

 and F. Kirchner
1,3

1
University of Bremen, Department of Computer Science, Workgroup Robotics

2
TZI-Center for Computing and Communication Technologies, Univ. of Bremen

3
ISIS Sensorial Materials Scientific Centre, Bremen

*E-Mail: sbosse@uni-bremen.de

Summary: We propose and compare two different data processing and communication architectures for the implementation of mobile agents in sensor

networks consisting of single microchip low-resource nodes.

Keywords: Sensor Networks, Distributed Data Processing, Agent, Computer Architecture, Communication, Single-System-On-Chip, High-Level

Synthesis.

1. Introduction

Recently emerging trends in engineering and micro-system

applications such as the development of sensorial materials show

a growing demand for autonomous networks of miniaturized

smart sensors and actuators embedded in technical structures [6].

With increasing miniaturization and sensor-actuator density,

decentralized network and data processing architectures are

preferred or required. A multi-agent system is used for a

decentralized and self-organizing approach of data processing in

a distributed system like a sensor network, enabling the mapping

of distributed data sets to related information, for example,

required for object manipulation with a robot manipulator.

Traditionally, mobile agents are executed on generic

computer architectures [7,8], which usually cannot easily be

reduced to single-chip systems like they are required, e.g., in

sensorial materials with high sensor node densities.

We propose and compare two different data processing and

communication architectures for the implementation of mobile

agents in sensor networks consisting of single microchip low-

resource nodes.

The distributed programming model of mobile agents has

the advantage of simplification and reduction of synchronization

constraints owing to the autonomy of agents.

2. Distributed data processing with state-based agents

Initially, a sensor network is a collection of independent

computing nodes. Interaction between nodes is required to

manage and distribute data and computed information. One

common interaction model is the mobile agent. An agent is

capable of autonomous action in an environment with the goal to

meet its delegated objectives. An agent is a data processing

system, a program executed on a computer system, that is

situated in this environment [1] . A multi-agent system is a

collection of loosely coupled autonomous agents migrating

through the network. Agents can be used in sensor networks for:

 Sensor data processing and extraction

 Sensor data fusion, filtering, and reduction of sensor

data to information in a region of interest

 Sensor data and information distribution and transport

 Global energy management, exploration and negotiation

Agents can operate state-based. An agent consists of a state,

holding data variables and the control state, and a reasoning

engine, implementing behaviours and actions. In this proposed

data processing and communication architecture, the state of an

agent is completely kept in messages transferred in the network

providing agent mobility. The functional behaviour of an agent is

implemented statically with a finite-state machine part of the

local data processing system on register-transfer level (RTL).

Figure 1. State-based agents and interaction with

environment.

Agents record information about the environment state eE

and history. Let I be the set of all internal states of the agent. An

agent's decision-making process is based on this information. The

perception function see maps environment states to perceptions,

function next maps an internal state and percept to an internal

state, the action-selection function action maps internal states to

actions (see also Fig. 1):

see : E Per

next : I Per I

action : I Act

3. Approach I: message-based/state machine agent

implementation

file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CFACGJCG

 187

Figure 2 shows the proposed execution environment used for

the data processing agents. There is a message module

implementing smart delta-distance routing of messages [2],

providing some kind of fault-tolerance regarding interconnect

failures, and several finite-state machines implementing the agent

behaviours and providing virtual machines able to process

incoming agents. All parts are mappable to digital logic on RTL

and single-SoC system architecture, a prerequisite for

miniaturized sensor nodes embedded in structures and sensorial

materials.

Figure 2. Sensor node building blocks providing mobility

and processing for multi-agent systems: parallel agent virtual

machines, agent-processing scheduler, communication, and data

processing. All parts are mappable to digital logic on RTL and

SoC system architecture.

The functional agent behaviour is implemented with a (non-

mobile) finite state machine (virtual machine) built in the sensor

node side, modelled with a high-level synthesis approach on an

imperative multi-processing programming language level [3].

Inter-agent communication is provided by shared data

structures, available on each sensor node. Each node is

represented by a node agent, too, to ensure interaction and

information exchange between mobile agents and the sensor

node. All interacting agents must comply about the data

structures and types, fixed at design time.

4. Approach II: multi-agent implementation using code

morphing

Multi-agent systems providing migration mobility using

code morphing can help to reduce the communication cost in a

distributed system [4]. The second proposed hardware

architecture and runtime environment is specifically designed

towards the implementation of mobile agents by using dynamic

code morphing under the constraints of low-power consumption

and high component miniaturization. It uses a modified and

extended version of FORTH as the programming language for

agent programs. FORTH is a stack-based interpreted language

whose source code is extremely compact. Furthermore, FORTH

is extensible, that is new language constructs (called words, zero-

operand functions) can be defined on the fly by its users. A

FORTH program contains built-in core instructions directly

executed by the FORTH processing unit and user-defined high-

level word and object definitions that are added to and looked up

from a dictionary data structure. This dictionary plays a central

role in the implementation of distributed systems and mobile

agents. Words can be added, updated, and removed (forgotten),

controlled by the FORTH program itself. User-defined words are

composed of a sequence of words. Again, the runtime

environment is modelled on the behavioural level using the

multi-process-oriented programming language and can be

embedded in a single-SoC hardware design [4].

The principal system architecture of one FORTH

processing unit (PU) part of the node runtime environment is

shown in Fig. 3. A complete runtime unit consists of a

communication system with a smart routing protocol stack, one

or more FORTH processing units with a code morphing engine,

resource management, code relocation and dictionary

management, and a scheduler managing program execution and

distribution, which are normally part of an operating system

which does not exist here. A FORTH processing unit initially

waits for a frame (a FORTH program) to be executed. During

program execution, the FORTH processing unit interacts with the

scheduler to perform program forking, frame propagation,

program termination, object creation (allocation), and object

modification.

The scheduler is the bridge between a set of locally parallel

executing FORTH processing units, and the communication

system, a remote procedure call (RPC) interface layered above

SLIP, a fault-tolerant message-based communication system used

to transfer messages (containing code) between nodes using

smart delta-distance-vector routing [2].

The simple FORTH instruction format is an appropriate

starting point for code morphing, i.e., the ability of a program to

modify itself or make a modified copy, mostly as a result of a

previously performed computation. Calculation results and a

subset of the processing state can be stored directly in the

program code which changes the program behaviour. The

standard FORTH core instruction set was extended and adapted

for the implementation of agent migration in mesh networks with

two-dimensional grid topology. In our system, a FORTH program

is contained in a contiguous memory fragment, called a frame. A

frame can be transferred to and executed on remote nodes and

processing units

Figure 3. Mobile-agent runtime architecture providing code

morphing, consisting of FORTH data processing units, shared

memory and objects, dictionary, scheduler, and communication.

5. Comparison and Conclusions

In the following comparison, the first approach is

abbreviated state-machine-based, the second code-based. Table 1

file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23BABFDCGF
file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CIHDHJGJ
file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CFABFIDB
file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CFAHGCBD
file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CFAHGCBD
file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CFACEBGA
file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CIHDHJGJ
file:///C:/windows/profiles/sbosse/My%20Documents/publications/sysint2012/sysint2012.doc%23CFAGFHFE

188

compares both runtime architectures and agent implementations.

Both approaches allow the implementation of agent mobility and

processing on hardware single-chip level. Flexibility and design

time versus resource requirements is the main difference. The

state-machine-based approach with fixed and hard implemented

functional agent behaviour is well suited for a small set of

different agents with simple algorithm complexity, whereas the

code morphing approach is suited for a larger set of different

agents with higher algorithm complexity.

A program controlled approach is less power efficient and

requires more resources, but provides a higher lever of

implementation and design freedom. The code morphing

approach reduces communication complexity. One main issue

addressed in the design of multi-agent systems is cooperation and

communication of agents, and to ensure how can agents

understand each other. Message based systems require some kind

of communication language. Each node which processes agents

must comply about well known data structures used for inter-

agent communication, fixed at design time. There are only

limited capabilities to handle data type inconsistency and the

non-availability of expected data. In contrast, the code based

approach uses named code and data words resolved by a

dictionary, with a well known interface, and the capability to

check and handle type inconsistency. The hardware

implementation of the dictionary and the operational interface

produces a fairly high overhead of the resources compared with

the traditional shared data approach using memory references (as

used in the state-machine-based approach I).

Future experimental investigations using real sensor

networks with different classes of data processing algorithms

should clarify the advantages and disadvantages of both

approaches.

References

[1] Wooldridge, M., 2009, An Introduction to MultiAgent

Systems, Wiley.

[2] Bosse, S., Lehmhus, D., 2010, Smart Communication in a

Wired Sensor- and Actuator-Network of a Modular Robot

Actuator System Using a Hop-Protocol with Delta-Routing,

Proceedings of Smart Systems Integration Conference,

Como, Italy, 23-24.3.2010.

[3] Bosse, S., 2011, Hardware-Software-Co-Design of

Parallel and Distributed Systems Using a unique Behavioural

Programming and Multi-Process Model with High-Level

Synthesis, Proceedings of the SPIE Microtechnologies 2011

Conference, 18.4.-20.4., Prague, Session EMT 102 VLSI

Circuits and Systems

[4] S. Bosse, S., Pantke, F., Kirchner, F., 2012, Distributed

Computing in Sensor Networks Using Multi-Agent Systems

and Code Morphing, ICAISC Conference, Prague.

[5] Kent, A., Williams (Eds.), J. G., 1998, Mobile Agents,

Encyclopedia for Computer Science and Technology, New

York: M.Dekker Inc..

[6] Pantke, F., Bosse, S., Lehmhus, D., Lawo, M., 2011, An

Artificial Intelligence Approach Towards Sensorial

Materials, Future Computing Conference.

[7] Peine, H ., Stolpmann, T., 1997, The Architecture of the

Ara Platform for Mobile Agents, MA '97 Proceedings of the

First International Workshop on Mobile Agents, Springer-

Verlag London.

[8] Wang, A.I., Sørensen, C.F., Indal., E., 2003, A Mobile

Agent Architecture for Heterogeneous Devices, Wireless and

Optical Communications.

Table 1. Comparison of the two data processing approaches for mobile agents.

 I. State-Machine II. Code morphing

Agent behaviour is .. fixed, nodes must comply with previously defined

common data types and structures as well as

message formats

not fixed, nodes do not require

knowledge of data structures and types

in advance

Functional behaviour is

implemented ..

statically in local data processing machine dynamically in programming code

Implementation in .. Hardware, single chip Hardware, single chip

Agent state is kept in data storage code, stacks, and data storage

Message size depends on full state size full code size and partial state size

Hardware resources are

..

small (< 1M eq. logic gates including storage) large (> 1M-3M eq. logic gates

including storage)

Storage resources are .. small (< 5000 register cells) large (> 10000 register cells)

Speed is .. high (1-2 clock cycles per statement) medium (5-20 clock cycles per core

word)

Power consumption is .. low medium

